A new and versatile diamide-diamine donor ligand set in early transition metal chemistry†

Michael E. G. Skinner, David A. Cowhig and Philip Mountford*

Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK OX1 3QR. E-mail: philip.mountford@chemistry.oxford.ac.uk

Received (in Cambridge, UK) 28th March 2000, Accepted 22nd May 2000

Straightforward, multigram synthesis of the new diamide-diamine proligand $H_2N_2NN^\prime$ $[N_2NN^\prime = (2\text{-}NC_5H_4)\text{-}CH_2N(CH_2CH_2NSiMe_3)_2]$ is described along with a preliminary survey of the five- and six-coordinate, neutral and cationic, single- and multiply-bonded complexes of groups 3, 4 and 5 that it can support; the related bis(alkoxide)-diamine proligand $H_2O_2NN^\prime$ is also described where $H_2O_2NN^\prime = (2\text{-}NC_5H_4)CH_2N(CH_2CMe_2OH)_2.$

The bis(cyclopentadienyl) ligand set has been the dianionic environment *par excellence* for organotransition metal chemistry for *ca*. four decades.¹ Driven by the search for new fundamental and catalytic chemistry, the last ten years in particular have established the importance of polydentate diand tri-anionic N-donor ligands as environments for early- to mid-transition metal coordination and organometallic complexes.²

Among the tetradentate 'N₄' donor ligands, the porphyrins^{2b} and tetraaza[14]annulenes^{2c} are probably the best established dianionic ligands. They provide a really quite rigid, square-base donor environment. In contrast, the trianionic triamidoamine 'tren' systems generally provide four vertices of a trigonal bipyramid or octahedron. Such ligands have been extremely successful in developing p-block, early-mid transition metal, lanthanide and actinide chemistry.^{2d,3} Despite these successes, however, as a trianionic species the versatility of this ligand is hampered in certain regards for developing new lanthanide, and groups 3 and 4 chemistry in particular since there is only one (group 4) or no (lanthanide, group 3) metal electrons remaining for binding additional anionic ligands. Dianionic 'N₄' analogues of the tren systems will help advance early transition metal and lanthanide chemistry, and compliment the extensive studies of tridentate diamido-donor systems.2a Indeed, it was recently reported that addition of an extra donor arm to bis(alkoxide)-donor systems can lead to enhanced ethylene polymerisation capability.4

The straightforward syntheses of the new proligands H_2N_2NN' **2**- H_2 and H_2O_2NN' **3**- H_2 are shown in Scheme 1.‡ The intermediate tetra-amine **1** has been previously described,⁵ but we have found that the alternative synthesis shown from 2-aminomethylpyridine is more convenient on a large scale. The proligand **2**- H_2 is conveniently converted (BuⁿLi) to its lithiated derivative Li₂N₂NN' **2**-Li₂. The new proligands can all be prepared in multigram quantities: *e.g.* 5.4 g of **1** yields 7.1 g (75%) of **2**- H_2 and lithiation of this gives 4.2 g (57%) of Li₂N₂NN' **2**-Li₂.

The ready availability of H_2N_2NN' **2-** H_2 and Li_2N_2NN' **2-** Li_2 has allowed us to develop a representative range of new five-and six-coordinate, neutral and cationic, single- and multiply-bonded complexes of groups 3, 4 and 5 (Scheme 2). They are formed by salt- (for **4–6**), and alkane- or amine- (for **7** and **8**) elimination reactions; the applicability of a range of such protocols will clearly permit these new ligands to be incorpo-

DOI: 10.1039/b0024550

Scheme 1 Reagents and yields: i, N-tosylaziridine (74% for this step) then conc. H₂SO₄ 83% (61% overall); ii, 2 Me₃SiCl, 4 Et₃N, 75%; iii, 2.2 BuⁿLi, 57%; iv, 3-isobutylene oxide, 25%.

rated into a wide range of transition, lanthanide and main group metal derivatives. Thus reaction of Li₂N₂NN′ **2**-Li₂ with [Ti(NAr)Cl₂(py)₃]^{6a} (Ar = C₆H₃Pri₂-2,6) or [Ta(NBu^t)-Cl₃(py)₂]^{6b} gives the five- and six-coordinate imides, [Ti-(NAr)(N₂NN′)] **4** and [Ta(NBu^t)Cl(N₂NN′)] **5**, respectively. Transition metal imides continue to attract considerable interest,⁷ and those of group 4 with π -donor coligands can have a particularly rich reaction chemistry.^{2a,7,8} Reaction of **2**-Li₂ with YCl₃ in pyridine affords the 'ate' complex **6**, formulated as '[YCl(N₂NN′)(py)]·1.5LiCl' on the basis of elemental analyses and ⁷Li NMR spectroscopy. Nonetheless, preliminary reactivity studies of **6** show that it behaves as though it were simply [YCl(N₂NN′)(py)], and that it is a useful synthon with the Y-bound Cl ligand being readily substituted by bulky monoanionic donors.

$$Me_{3}Si, \qquad Pr^{i}$$

$$N = Ta Cl$$

$$N = Ta$$

Scheme 2 Reagents and yields: i, (with **2**-Li₂) [Ta(NBu^t)Cl₃(py)₂], 36 h, 29%; ii, (with **2**-Li₂) [Ti(NC₆H₃Prⁱ₂-2,6)Cl₂(py)₃], 58%; iii, (with **2**-Li₂) YCl₃, 71%; iv, (with **2**-H₂) for **7**: [ZrCl₂(CH₂SiMe₃)₂·2Et₂O], 87%; for **8**: [Zr(NMe₂)₄], 55%; v, PhCH₂MgCl, 87%; vi, LiMe (2 equiv.), 88%; vii, B(C₆F₅)₃, 61% [counter ion = B(CH₂Ph)(C₆F₅)₃⁻]; viii, B(C₆F₅)₃, 60% [counter ion = BMe(C₆F₅)₃⁻].

 $[\]dagger$ Electronic supplementary information (ESI) available: experimental details and characterisation. See http://www.rsc.org/suppdata/cc/b0/b002455o/

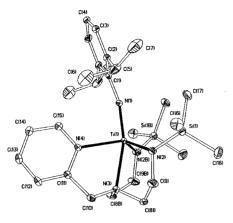


Fig. 1 Displacement ellipsoid plot of [Ti(N₂NN')(NC₆H₃Pri₂-2,6)] 4.

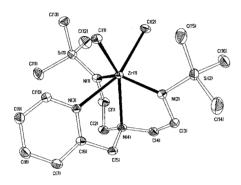


Fig. 2 Displacement ellipsoid plot of [Zr(N₂NN')Cl₂] 7.

The group 4 compounds $[Zr(X)_2(N_2NN')]$ (X = Cl 7 or NMe₂ 8) are readily obtained from 2-H₂ and $[Zr(CH_2Si-Me_3)_2Cl_2\cdot 2Et_2O]^9$ or $[Zr(NMe_2)_4]$, respectively. Such *cis-X*₂ complexes are of great importance in the study of new stoichiometric and catalytic group 4 reaction chemistry. ¹⁰ The bis(alkoxide) analogues of 7 and 8, namely $[Zr(X)_2(O_2NN')]$ [X = Cl 9 or NMe₂ 10, eqn. (1)] can be similarly prepared from

OH
$$(Zr(NMe_2)_4]$$
 or $(O_2NN')Zr \times X$
OH $(Zr(CH_2SiMe_3)_2Cl_2 \cdot 2Et_2O)$ $(O_2NN')Zr \times X$
 (1)
 (1)
 (1)

 $\rm H_2O_2NN'$ 3-H_2. The compounds 9 and 10 will provide interesting comparisons with their more sterically-shielded tetraaza homologues 7 and 8, and with very recent bis(phenoxide)–diamine ligands that are active ethylene polymerisation catalysts. 4

We have structurally confirmed that the N₂NN' ligand can readily accommodate both five- and six-coordinate metal centres. Views of the X-ray structures of [Ti(NAr)(N₂NN'] 4 and [ZrCl₂(N₂NN')] 7 are shown in Fig. 1 and 2, respectively.§ The structure of 4 reveals an approximately trigonal bipyramidal geometry at the five-coordinate Ti centre. The structure of 7 reveals an approximately octahedral Zr centre; the chloride ligands are mutually *cis*. In both 4 and 7, and indeed in all the derivatives to date of the N₂NN' ligand, including the crowded bis(dimethylamide) complex 8, the pyridyl donor is firmly bound to the metal centre and establishes a well defined coordination environment.

One or both chloride ligands in [ZrCl₂(N₂NN')] **7** can be substituted using organo-magnesium or -lithium reagents forming the mono- and di-alkyl derivatives [Zr(CH₂Ph)Cl(N₂NN')] **11** and [ZrMe₂(N₂NN')] **12** in *ca.* 90% yield. There is no evidence in any of the reaction chemistry herein for metallation or other attack at the pyridyl donor group. *cis*-Dialkyl compounds such as **12** are potential precursors to

Ziegler-Natta olefin polymerisation catalysts. 10 Treatment of 12 with $B(C_6F_5)_3$ or $[CPh_3][B(C_6F_5)_4]$, however, affords the TMS-metallated cation 13 with counter anion $[MeB(C_6F_5)_3]^{-1}$ or $[B(C_6F_5)_4]^-$; there is no evidence for interaction between 13 and the $[MeB(C_6F_5)_3]^-$ anion in solution. The $[MeB(C_6F_5)_3]^$ salt of 13 is thermally stable at r.t. in both the solid state and CD₂Cl₂ solution, and has been fully characterised by NMR and elemental analysis. Cation 13 presumably forms via an intermediate cation [ZrMe(N₂NN')]⁺ (not observed) followed by σ -bond metathesis with one of the SiMe₃ C–H bonds. Similar reactions have been seen in group 4 triamidoamine chemistry, 11 but can, in principle, be circumvented by use of alternative amide N-substituents: such protocols are well established.^{2a,12} Indirect evidence for a five-coordinate cationic intermediate comes from the formation of the cation [ZrCl(N₂NN')]+ 14 from the monobenzyl complex $[Zr(CH_2Ph)Cl(N_2NN^\prime)]$ 11 and $B(C_6F_5)_3$. Salts of the cation 13 react sluggishly with ethylene (1 atm), but work is in progress to develop analogues of H₂N₂NN' with other, more robust amide N-substituents.

In summary, we have described the new diamido-diamine ligand $H_2N_2NN^\prime$ and a survey of its versatile complexation chemistry.

This work was supported by the EPSRC and Royal Society. We thank Dr G. A. Vaughan (Exxon Chemical Co.) for a gift of [Zr(NMe₂)₄] and Dr D. J. Watkin for help with the X-ray data collection.

Notes and references

‡ Full spectroscopic data and elemental analyses have been obtained as far as possible for all the new compounds.

§ *Crystal data* for 4: $C_{28}H_{49}N_5Si_2Ti$, M=559.80, orthorhombic, space group *Pbcm*, a=9.8632(4), b=18.413(1), c=17.507(1) Å, U=3179.4(8) A³, Z=4, T=170 K, $\mu=0.36$ mm⁻¹, 3688 independent reflections ($R_{merge}=0.035$), 3240 with $I>3\sigma(I)$ used in refinement, final R indices: R=0.0574, $R_{w}=0.0434$. For $7\cdot0.5C_6H_6$: $C_{16}H_{32}Cl_2N_4Si_2Zr\cdot0.5C_6H_6$, M=537.81, monoclinic, space group $P2_1/n$, a=8.4280(1), b=14.3380(4), c=21.5020(6) Å, $\beta=93.295(2)^{\circ}$, U=2594.0 ų, U=150 K, U=150

- 1 Metallocenes: synthesis, reactivity, applications, ed. A. Togni and R. L. Halterman, Wiley-VCH, New York, 1998, vol. 1 & 2.
- 2 Recent reviews: (a) diamide-donors in general; L. H. Gade, Chem. Commun., 2000, 173 (Feature Article); (b) porphyrins: H. Brand and J. Arnold, Coord. Chem. Rev., 1995, 140, 137; (c) tetraaza[14]annulenes: P. Mountford, Chem. Soc. Rev., 1998, 27, 105; (d) triamidoamines: R. R. Schrock, Acc. Chem. Res., 1997, 30, 9; J. G. Verkade, Acc. Chem. Res., 1993, 26, 483.
- 3 P. Roussel, N. W. Alcock and P. Scott, *Chem. Commun.*, 1998, 801; P. Roussel, N. W. Alcock, R. Boaretto, A. Kingsley, I. J. Munslow, C. P. Sanders and P. Scott, *Inorg. Chem.*, 1999, 38, 3651 and references therein.
- 4 E. Y. Tshuva, I. Goldberg, M. Kol, H. Weitman and Z. Goldschmidt, *Chem. Commun.*, 2000, 379.
- 5 H. Adams, N. A. Bailey, W. D. Carlisle, D. E. Fenton and G. Rossi, J. Chem. Soc., Dalton Trans., 1990, 1271.
- 6 (a) A. J. Blake, P. E. Collier, S. C. Dunn, W.-S. Li, P. Mountford and O. V. Shishkin, J. Chem. Soc., Dalton Trans., 1997, 1549; (b) J. Sundermeyer, J. Putterlik, M. Foth, J. S. Field and N. Ramesar, Chem. Ber., 1994, 127, 1201.
- 7 D. E. Wigley, *Prog. Inorg. Chem.*, 1994, **42**, 239; P. Mountford, *Chem. Commun.*, 1997, 2127 (Feature Article).
- 8 J. L. Bennett and P. T. Wolczanski, J. Am. Chem. Soc., 1997, 119, 10 696 and references therein.
- H. Brand, J. A. Capriotti and J. Arnold, Organometallics, 1994, 13, 4469.
- 10 G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int. Ed., 1999, 38, 429 and references therein.
- C. Morton, N. W. Alcock and P. Scott, Organometallics, 1999, 18, 4608; C. C. Cummins, R. R. Schrock and W. M. Davis, Organometallics, 1992, 11, 1452.
- 12 G. E. Greco, A. I. Popa and R. R. Schrock, Organometallics, 1998, 17, 5591.